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Abstract. This paper deals with the optimal control of a one-machine two-product manufacturing 
system with setup changes, operating in a continuous time dynamic environment. The system is 
deterministic. When production is switched from one product to the other, a known constant setup 
time and a setup cost are incurred. Each product has specified constant processing time and constant 
demand rate, as well as an infinite supply of raw material. The problem is formulated as a feedback 
control problem. The objective is to minimize the total backlog, inventory and setup costs incurred 
over a finite horizon. The optimal solution provides the optimal production rate and setup switching 
epochs as a function of the state of the system (backlog and inventory levels). For the steady state, 
the optimal cyclic schedule is determined. To solve the transient case, the system’s state space is 
partitioned into mutually exclusive regions such that with each region, the optimal control policy is 
determined analytically. 
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1. Introduction 

The goal of the Production and Setup Scheduling Problem (PSSP) is to determine 
the optimal production rates and setup epochs of several products on a single 
machine. The latter is assumed to have controllable production rates. Each product 
has known constant demand rate and processing time. When production is switched 
from one product to the next, a constant setup time as well as a fixed setup cost are 
incurred. Backlog is allowed and the system is not necessarily in steady state. The 
objective is to control the production rate of each product as well as to control the 
setup change epochs so as to minimize the total setup, inventory and backlog costs 
over a finite or infinite planning horizon. The problem reduces to the Economic Lot 
Scheduling Problem (ELSP), when the planning horizon is infinite, the system is in 
steady state, the machine has fixed production rates, no backlog is allowed, and the 
objective is to determine lot sizes that minimize the average setup and inventory 
holding costs per unit time. Despite a large amount of research work on the ELSP, 
an optimal solution approach has not been proposed yet. Rather, good (some times 
excellent) heuristics have been suggested. A comprehensive review of the ELSP 
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through 1976 is given in Elmaghraby (1978). Recent work on the ELSP includes 
the work of Goyal(1984), Roundy (1985), Dobson (1987), Gallego (1989), Jones 
and Inman (1989), and Carreno (1990). Recently, researchers have dropped the 
assumption of fixed production rates at the machine and have improved the ELSP 
model using controllable production rates. Recent work along this new direction 
includes the work of Buzacott and Ozkarahan (1983), Silver (1990), Moon et al. 
(1991) and Elhafsi and Bai (1996a). 

The PSSP is concerned with the study of the system during its transient and 
steady state periods, throughout the planning horizon. In this paper, we consider a 
finite planning horizon and assume that the steady state is finite time achievable. 
This model may have many applications in practice. For instance, consider the 
following situation: We would like to plan the production of several products, 
periodically (say quarterly), on a bottleneck machine. The demand rate for each 
period of time is forecasted at the beginning of that period and should be satisfied 
during the planning period. The machine has enough capacity to meet the forecasted 
demand for each product and is fast enough to bring the inventory/backlog of all 
products to a steady state (which constitutes the most economical way of operating 
the system). Now, at the end of the planning horizon, the inventory and backlog 
of the products is checked and possibly different forecasted demand rates are to be 
used in the next planning horizon. It is clear that the output (inventory/backlog) 
of the previous period constitutes the input for the current period and hence new 
initial conditions as well as new parameters are to be used. As can be seen, at 
the beginning of each planning period we are faced with the problem of optimally 
driving the system to its steady state production cycle. Many other factors can 
change the conditions of the system and might drive it away from its steady state. 

The PSSP is formulated as a feedback control problem. The control must respond 
to certain initial disruptions so as to minimize a certain criterion. This kind of 
formulation is usually classified under production flow control models (see Olsder 
and Suri (1980) and Kimemia and Gershwin (1983)). Using the production flow 
control formalism, Sharifnia et al. (1991) investigated a single machine setup 
scheduling problem. They proposed a feedback setup scheduling policy which uses 
corridors in the surplus/backlog space to determine the epochs of setup changes. The 
corridors are chosen so as to guide the surplus trajectory to a target cycle which is 
referred to as the Limit Cycle. Srivatsan and Gershwin (1990) extended the ideas of 
Sharifnia et al. and developed methods for choosing the parameters of the corridors 
when the setup frequencies are not all the same. Caramanis et al. (1991) derived the 
optimality conditions for setup changes and solved them numerically for a two-part 
type systemusing a quadratic cost criterion. Hu and Caramanis (1992,1995) solved 
the three-part type setup problem numerically and deduced structural properties of 
the optimal policies. Based on the numerical results, they proposed near-optimal 
policies. Perkins and Kumar (1989) and Kumar and Seidman (1990) studied the 
performance of distributed real-time setup scheduling policies and investigated the 
conditions under which the system remains stable. Connolly (1992) proposed a 
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heuristic for a two-part-type one-machine setup system, based on known results of 
a perfectly flexible system. Bai and Elhafsi (1993) studied the real-time scheduling 
of an unreliable one-machine two-part-type non-resumable setup system. They 
provided a continuous dynamic programming formulation of the problem which 
they discretized and solved numerically. Based on the numerical solution they 
provided two heuristics to solve the stochastic problem. Gallego (1989) studied the 
ELSP problem in the case of a machine subject to disruptions of small magnitude. 
He shows that the optimal policy selects the production lot sizes as a linear function 
of the current inventory levels. 

In this paper, we study the production and setup control of a deterministic 
one-machine two-part- type system within a feedback control framework. Some 
of the results used in this paper are based on previous works by the authors (Bai 
and Elhafsi (1996), Elhafsi and Bai (1996a) and (1996b)), where a similar system 
was studied. The remainder of the paper is organized as follows: In Section 2, we 
present an optimal control formulation of the PSSP. In Section 3, we establish some 
preliminary results. In Section 4, we determine the optimal steady state production 
cycle of the system. The optimal transient behavior is presented in Section 5. In 
Section 6, we study the special case of zero setup times. We conclude our study 
with Section 7. 

2. Problem Formulation 

Consider a one-machine manufacturing system producing two distinct parts (or 
products) each has a constant demand rate di(i = 1,2). When production is 
switched from Part Type j to Part Type i ljfi), a given constant setup time Si 
and setup cost ki(i = 1,2) are incurred. Our formulation follows the general 
framework introduced by Kimemia and Gershwin (1983), where the production 
flow is modeled as continuous rather than discrete. Let xi(t) be the production 
surplus of Part Type i(i = 1,2) at time t; a positive value of q(t) represents 
inventory while a negative value represents backlog. Let ui(t) be the controlled 
production rate of the machine producing Type i parts at time t. Let a(t) = 
(al (t), az(t), 012(t), 021 (t)) be the setup state vector of the machine at time t. 
Where, pi, a;j (t) (J’ # i, i = 1,2, j = 1,2) are right continuous binary functions 
of t, such that ai = 1 when the machine is ready to produce Type i parts and 
q(t) = 0 otherwise; aij(t) = 1 when the machine is undergoing a setup change 
from Part Typej to Part Type i and aij(t) = 0 otherwise. Let s(t) be a nonnegative 
right continuous function of t which takes on the value 6i at the beginning of 
each setup change to Part Type i (i = 1,2) and decreases with time. s(t) indicates 
whether a setup is completed or not. We assume that initially the machine is not 
set up for either part type. 
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2.1. SYSTEM DYNAMICS AND CONSTRAINTS 

The dynamics of the system can be described by: 

dxi (t> - = ui(t) - di, 
dt 

i = 1,2 

0 5 q(t) 5 upi( i = 1,2 (2) 

where ?J is the maximum production rate of the machine when it is producing 
Type i parts. 

The setup states of the machine obey the following set of constraints: 

01 (t) + 02(t) + 01,2(t) + 02,1(t) = 1; (3) 

if ai = land ai = 0, then s(t) = Sj and c+(t) = 1; (4) 

if s(t-) > 0 and aij(t-) = 1, then i(t) = -1 and aq(t) = 1; (5) 

if s(t-) = 0 and aij(t-) = 1, then aij(t) = 0 

ands(t) =Oandoj(t) = 1; (6) 

for i = 1,2, j = 1,2, i # j. Where s(t) denotes the time derivative of s(t). 

2.2. PENALTY FUNCTION 

For mathematical convenience, we assume that setup costs are incurred at a constant 
rate xi = rEi/& (i=1,2) dollars per unit time, during a setup change. Hence, at the 
end of a setup change to Part Type i, we would have a total setup cost of Ici. The 
instantaneous cost which penalizes the production for being ahead of (i.e., xi > 0) 
or being behind (i.e., xi < 0) the demand is given by: 

i=2 

h(x) = x($x+(t) + c;x;(t)), 
i=l 

where c’ and CL are the per unit instantaneous inventory holding and backlog costs 
respectively, and z+ (t) = max{x:i(t), 0) and x;(t) = max{-xi(t), O}. The total 
instantaneous cost is then given by: 

i=2 

g(x,a) = h(x) + c xP&) 

i=l,j#i 

i=2 

= c ($x:+(t) + c;xJt) + (k&5&jji(t)). 
i=l,j#i 

(7) 
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2.3. STATEVARIABLESANDCONTROLVARIABLES 

The state variable of the system is given by the vector x(t) = (zt (t), x*(t)). The 
variables u(t) = (~1 (t), ~z(t)) and a(t) = (at(t), q(t), 012(t), ~51 (t)) are the 
control variables. We denote by (a, U) the complete control vector. 

2.4. CAPACITY SET 

The capacity set represents the set of feasible production rates. When the setup 
state is a(t) at time t, it is given by: 

fqa(t)) = {u@)lO 5 u&) 5 u&(t),i = 1,2}. 

2.5. SETUPCONSTRAINTSSET 

The setup constraints set is the set of all possible setup vectors a(t) = (al (t), 02(t), 
a&t), 021 (t)) satisfying constraints (3)-(6). Let Q, denote this set. 

2.6. ADMISSIBLECONTROLPOLICIES 

We denote by Z (CD, R) the set of feasible controls, which depends on + and R. The 
set of admissible control policies, A, is the set of all mappings p, p : R2 -+ Z(O, @) 
which satisfy ~(5) = ( O, u an w ic are piecewise continuously differentiable. ) d h’ h 
These admissible control policies are feedback controls that specify the control 
actions (setup and production rate of the machine) to be taken, given the state of 
the system. 

2.7. OBJECTIVEFUNCTION 

The objective is to determine an optimal control policy p* E A, corresponding 
to a setup control 0” = (a;, a2*, aT2, 21 G* ) and a production flow rate control 
u* = (UT, uz), that minimizes for each initial state z(t) the following cost function: 

J&c(t), t> = f d4444) ds (8) 

where the minimization is over all functions ~(x(T)) = (a(r), u(r)), such that 
x(r), o-(r) and u(r) satisfy constraint (1) and a(r), u(r)) E =(a, R) fort 5 r 5 
tf, where tf is assumed to be sufficiently large. 

3. Preliminary 

It can be shown (see Bai and Elhafsi, 1996) that the optimal solution to the above 
problem can be obtained in two parts by considering a transient period and a steady 
state period. The steady state corresponds to the case where the state of the system 
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(inventory/backlog) has already reached a cyclic schedule, where the produced lots 
for each part type are of constant size over time. The transient period corresponds 
to the case where the state of the system still has not reached the cyclic schedule. 
In this section, we state and prove a theorem that will allow us to reduce the set of 
feasible production rates from an infinite set to a finite one with only three possible 
production rates. 

Let t, be the time instant the system reaches the steady state. The total cost can 
then be written as follows: 

J&(t), t) = 1”’ d+k 44) ds + 1; d44 44) ds 

= J,Tb@), t) + (tf - ts)J;w), t,). 

We refer to JF(x(t), t) as the transient cost, 

J:bt), 4 = 1” g(+), 44) ds 

and J;(z(&), t,) as the average steady state cost, 

(9) 

(10) 

J;Ws), ts) = (tf - b-l 1;’ d4444) ds (11) 

Throughout this paper, we assume that the following condition holds. 

ASSUMPTION 1. We assume that (tf - t), the planning horizon, is long enough 
so that the system reaches the steady state and stays there for a long period. 

The following Lemma is based on Assumption 1. 

LEMMA 1. Let t, be the time the system reaches the steady state, and Let T be 
the length of the cyclic schedule. Then, we have: 

lim 
1 

~ It” g(z(s), o(s)) ds = ; J,‘d44, ds)> ds 
(tf-t,)+cc tf - t, t, 

andbyAssumption I, we have J,$(x(tS),tS) E + Jzg(x(s),o(s)) ds. 

The proof of Lemma 1 is straight forward and shall be omitted. 

THEOREM 1. The optimal production rate vector U*(S) = (U;(S), 2~; (s)), (t < 
s < tf), beZongs to thejnite set ofvectors f2* = {(O,O), (U*, 0), (dl, 0), (0, Uz), 
(0, dz)}. Where ut (s) = 0 if the machine is not producing or undergoing a setup 
change to a Part Type; The machine produces at the demand rate (u:(s) = di)) 
only when xi(s) = 0 (i=l, 2). 
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Figure 1. General structure of the cyclic schedule. 

The proof of Theorem 1 is given in the appendix. 

4. Optimal Steady State Solution 

If the machine were perfectly flexible (i.e., with zero setup change times and 
costs), it would be optimal to produce both parts simultaneously at the demand 
rates (theoretically, it is optimal to infinitely switch production back and forth 
between the two products, since no costs or times are incurred when we switch). 
Thus, keeping the production surplus (inventory/backlog) at the zero level. In the 
case of significant setup times, it is not possible to produce both part types at the 
same time. Therefore, at the steady state the production surplus vector must follow 
a cyclic schedule that repeats itself over time. 

Based on Theorem 1, it is not difficult to see that a feasible cyclic schedule has 
the general structure shown in Figure 1, where zi represents the inventory/backlog 
axis of Part Type i (i=1,2). Now, assume that we start the cycle at the point Pl, 
we then progress toward the point P2 by producing Part Type 1 at the demand 
rate along segment [Pl,P2], where 22 decreases until we reach point P2. At this 
point, we increase the production rate to the maximum and continue producing Part 
Type 1. x1 increases while x2 decreases until we reach Point P3, where we switch 
production to Part Type 2. During the setup of the machine for Part Type 2, both 
inventory levels decrease. Once the machine is ready to produce Part Type 2 ( Point 
P4), the production begins with the maximum allowable rate in order to eliminate 
backlog as soon as possible (since after the set up, we end up with a backlog for Part 
Type 2). Once the backlog of Part Type 2 is completely eliminated, we decrease 
the production rate to the demand rate so that the system moves along [P5,P6]. 
When we reach P6, the production rate of Part Type 2 is increased to the maximum 
and a certain inventory is built to hedge against future shortages brought about by 
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setups and production of Part Type 1. At the point P7, we set up the machine for 
Part Type 1. At the point P8, we produce Part Type 1 at maximum production rate 
to eliminate backlog as soon as possible until we reach point PI, where we start 
the cycle all over again. 

The steady state solution is completely characterized when the optimal location 
and shape (in x-space) of the cyclic schedule is known. Using Lemma 1, it can be 
seen that determining the cyclic schedule is equivalent to solving a special two- 
product Economic Lot Scheduling Problem (ELSP). Graphically, the optimization 
problem can be seen as one of locating and determining the shape of the cyclic 
schedule in the x-space so as to minimize the average setup, inventory holding 
and backlog costs per unit time. In Elhafsi and Bai (1996a) the authors studied a 
special version of the ELSP where they considered controllable production rates 
at the beginning as well as within a production run. They determined the optimal 
solution for the two-product case (steady state case in this paper) analytically. The 
optimal solution consists of the times the machine spends producing at the demand 
rate and at the maximum rate as well as the maximum inventory and backlog levels. 
In this section, we determine the optimal coordinates of the points PI, P2, P3, P4, 
P5, P6, P7 and P8 in x-space. We also show that depending on the parameters, the 
cyclic schedule will have four different shapes. But before we present the solution, 
we introduce the following notation: 

For product i (i=l, 2) 
ti time spent producing at maximum rate within a cyclic schedule 

ri time spent producing at the demand rate within a cyclic schedule 
$7, maximum inventory level 

Si maximum backlog level 

-Yi =c+ci/(c+ + ci) cost factor 

Pi =di/Ui utilization factor of the machine by product i 
Ai =yi/2di( 1 - pi) 
T =cizf(ti + pi + Si) length of the cyclic schedule 
6 =6t + ~52 total setup time during T 
K =Icl + Icz total setup cost during T 

P =pt + p2 total utilization factor of the machine 

ai =(l - Pi)/(l - P) 
It can be shown (see Elhafsi and Bai, 1996a) that St, S2, 71 and 7-2 are the solution 
of the following optimization problem: 

Minimize F (S, 7) 

ki + 
’ 

24(1 - pi) 
(C’S; + c;(Si - Qi)2)) / [g % - 6) 
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( 

j=2 

Subject to: Qi=~i l+C(l-~j)~j/S-(l-p)7i/6 , i=1,2 
j=l 1 

Si 2 0, q 2 0, Qi 1 0, i = 1,2 

whereQ~=S~-s~andq~=d~S(1-p~)/(l-p)fori=1,2. 
The optimal solution to the above optimization problem is given as follows: 

S’i = Q&/(c’ + ci),i = 1,2; 

si = -Qic~/(c~ + cc), i = 1,2. 

Substituting S’i in F(S, T) gives 

J’(T) = (K + A,Q: + A2Q$>/(Q,/d, + Q2/d2 - 6). 

The quantities &I, Q2, ~1, and 72 are calculated as follows: 

Q’i” = ~1d2~2(1 + 1 + 2J-q - P)(Ql/Ydl + a2/r2d2>/S2>/ 

(a2471 + Ql d272); 

Q; = q24~1(1 + j/l + 2fW - P)(~I/YI~ + ~2/~2d2)/J~)/ 

(a2471 + 4272); 

7;” = Q;/d2 - QW(l - p1)4 - 6; 

~2” = Q;L/d, - Q;p2/(1 - p2)d2 - 5. 

IFr,21 2 Oandr; 2 OTHEN 

r1* = r;1, r;=r;,Q;=QyandQ;=Q;; 

STOP 
ELSE 

Q’i = (1 - pl)dq/(K + A2(Sd2>2>/(4(1 - PI)~AI + 4&42); 

Q; = &a + pldz@ + -42(Sd2>2>/(4(1 - PI)~AI + 4&42); 

and compute ~1” and @, using (Ha) and (15b). 
IF 7; > 0 THEN 
Calculate C2 = F(T~, T.) using (13). 
ELSE 

c2=00. 
END 

Wa) 

Wb) 

(13) 

(144 

(144 

Wa> 

(15b) 

(164 

(16b) 
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Let 

Q’i = 46 + pzdq/(K + A1(N)~)/(d2,(1 - ~2)~A2 + &;AI), (1W 

Q; = (1 - pz)d2@ + 4Pd2)/@(l - ~2)~A2 + &;A), 

and compute ~1” and $,,using (15a) and (15b). 
IF rr> 0 THEN 

(17b) 

Calculate Cl = F($, 7;) using (13). 
ELSE 

Cl = 00. 
END 
Let Qy = q1 and QF = q2 H 71” = 0 and ~2” = 0; 
Calculate CO = F($, T?) using (13). 
((G 7;); (QL &;)I = argmin(,;,~~),(9;,&,“)ICO, CL C2) 
ENDIF 

Now, based on Figure 1, PJ (5=1,2,. . ., 8) are given as follows: 

Pl = 
( 

0 
s2 - &d2 + Wl~2/4(1 - p1) > ’ 

P2 = 
( 

0 
592 - &d2 + Sld2Pl/4(l - Pl) - Tld2 > ’ 

P3 = (,+“,,)) P4= (Sl ;2J2”‘)) 

p5 = s1 - Wl + sA&&(l - p2) 
0 7 

SI - Wl + &d&(1 - ~2) - ndl 

P,“= (sz:;ld2). 

> 
7 

W-4 

(17b) 

U7c) 

Here, si, Si, Qi and q(i = 1,2) are the optimal values calculated above. 
The four possible cases of the optimal cyclic schedule are shown in Figures 2, 

3,4 and 5. The following theorem gives a condition for which the cyclic schedule 
of Figure 2 is optimal in the case of zero setup costs. This result is useful for the 
remainder of the paper. 

THEOREM 2. Without loss of generality, let Part 2 be the part such that Y2d2 > 
yldl. If the s e up costs kl and k2 are zero, then rT = 0 and rl = 0 if and only t 
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Figure 2. Case where ~-1 = 0 and ~2 = 0. 

ifpfpl - 1 > 0. Ifp+pl - 1 < 0, then7: = Oand7; = Oifanddyif 
~2d2/~1d1 5 (1 - pl)/(l - p - pl) (see uppendixforproof). 

The following corollary follows immediately. 

COROLLARY 1. Assuming that Part 2 is the part such that rzd2 1 y1 dl. If the 
setup costs kl and ,472 are nonzero, then rr = 0 and r. = 0 if and only if 

0 I K I (534 min{(l-P2)(Y2d2-Yldl)+~ldl; (p+pl-l)yzd2+(1-pl)yldl}. 

The following theorem shows that, when the setup costs are zero for both parts, at 
most one part type will be produced at the demand rate, during the cyclic schedule. 

THEOREM 3. If the setup costs kl and IG2 are zero, then at least one of the ri ‘s will 
be equal to zero (see appendix for proofi. 

In the next section, we derive the optimal solution for the transient case. We show 
how the optimal solution of the case shown in Figure 2 is adapted to the other three 
cases shown in Figures 3,4 and 5. 

5. Optimal Transient Solution 

As indicated by Theorem 2, for a heavily loaded system (i.e., p is close to one), the 
condition p + pi - 1 2 0 will hold true. Hence, r; and 7-J will be equal to zero. In 
this case, the cyclic schedule is as shown in Figure 2. In order to apply the results to 
the other cases, we need to extract a schedule from the cyclic schedule of Figure 5 
(which represents the general case). The extracted schedule has exactly the solution 
structure shown in Figure 2. Figure 6 shows how to extract this schedule. Now, let 
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Figure 3. Case where TI = 0 and 72 > 0. 

Figure 5.  Case where 71 = 0 and 7 2  = 0. 



OPTIMAL PRODUCTION CONTROL 195 

Figure 6. Extraction of the extracted schedule. 

us determine the location of the extracted schedule. The latter is characterized by 
the coordinates of the points A, B, C and D in x-space (see Figure 6). 

LetA = (;:),I3 = (zk),C = @), and.0 = (gi). 
Denote by L 1, the line containing Points D and P3 and by L2, the line containing 
Points B and P7 (see Figure 6). Then, Ll and L2 are given as follows: 

LineLl : d2p1(~1 - p31) + dl(l - ,&)(x2 - p32) = 0; (18) 

LineL2 : d2(1 - p2)(21 - I+) + dt~2(~2 - P72) = 0. (19) 

Notice that B = A - (2::) and D = C - (i:$) and that A E Ll, B E L2, C E L2, 
andD E Ll. 

Hence, the coordinates of Point A and Point C can be determined by solving the 
following system of linear equations, respectively: 

1 
d2&41 - p31) + dl(1 - p1)(A2 - p32) = 0, 

d2(1 - ~2)(A1 - &A - p71) + dlp2(A2 - b-b - p72) = 0; 

1 

&m(G - &dl - p31) + dl(l - pl)(c2 - 616 - p32) = 0, 

&(l - P2)(c1 - p71) + 4&G - p72) = 0. 

The solution of the above two systems is given by: 

A = ( 
8 + (WhhwQ2 - MJ - ~2)(Q1- 64) 

s2 + M2 + (dzl4)mdQl - W - &2m2/U - P) > ’ 
(20) 

B = Sl - Wl + (dllddwuQ2 - 4 - ~2)(Q1 - 64) 

> 

. 

52 + (d&)wdQl - W) - Q2m2/‘(1 - P) ’ 
(21) 
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Figure 7. Regions R” and R”. 

c = SI + bdl + Wd2)~2w(Q2 - Sd2) - Q~pm/‘(l - p) . 

s2 + (~2/4)w2&1 - 41 - p1)(Q2 - Sd2) > ’ 
(22) 

D= ~1 + (h/d2)~2a1 (Q2 - Sd2) - &1~1p2/(1 - p) 

S2 - bd2 + (d2/4)~1~2Q1 - a2(1 - p1)(Q2 - Sd2) > ’ 
(23) 

Notice that, if there is no production at the demand rate for both parts (i.e., 71 = 0 
and 72 = 0), then &I = qr and Q2 = 42. In this case, we recover the coordinates of 
the cyclic schedule studied in Bai and Elhafsi (1996) and Elhafsi and Bai (1996b) 
which are given below: 

A = (s2:J2d2), B= (s1;2z”‘), C= (“;fi”‘) 

and D = 
( S2sild2)’ 

Now, to obtain the optimal solution of the transient case, the x-space is divided 
into two mutually exclusive major regions (7X” and 73” in Figure 7) which are 
defined as follows: 

RU = {(xl,m)l&(l - p2)(21 - 4) + dlpz(zz - A2) < Wbpl(zl - Cl) 

+dl(l - p1)(~2 - C2) < 0); 

R” = {(wn)(d2(1 - p2)(21 - AI) + dm(m - A2) L O;&pl(zl - Cl) 
f&(1 - p1)(22 - C2) 2 O}. 
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In Figure 7, Lines L12 and ,521 are defined as follows: 

LineL12 : &(l - pz)(zt - Al) + dlp~(zz - AZ) = 0; (24) 

LineL21 : d2p1(q - Cl) + dt(l - pt)(zz - C*) = 0. (25) 

We carry out the transient analysis in two parts. In the first part, we determine 
the optimal transient solution for all initial surplus levels in region RD. In the 
second part, the optimal transient solution for initial surplus levels in Region R” 
is derived. Without loss of generality, we index the parts such that Part Type 1 is 
the part type with the larger setup time and setup cost (i.e., 61 2 62 and kt 2 kz). 

6. Optimal Transient Solution in Region 72’ 

To determine the optimal solution for initial surplus levels in Region R”, we apply 
the same technique used in Bai and Elhafsi (1996). First, we partition Region R” 
into three mutually exclusive regions, G, Gl and G2. Then, we further partition 
Region G into eight mutually exclusive regions Gil, G12, G21, G22, Hll, H12, 
H21, and H22. Figures 8 and 9 show the partition of Region 73” and G respectively. 
These regions are defined as follows: 

~‘11 = {(xl, z2)\x1 - bd, 1 0; 42(x1 - p71) +&(x2 - p72) 2 o}; 

G12 = {(21,22)1d2(i79 - p71) - d&2 - p72) > 0; 42(z1 - El) 

+d&2 - E2) > W2(1- p2)h - A,) + hp2(~2 - A2) L 0); 

G21 = ((51,Q)l - &2(x1 - p31) + d&2 - p32) 1 o;d2(x1 -El) 

-d1(z2 - E2) > W2Pl(21 - Cl) + dl(l - /a>(22 - C2) r 0); 

G22 = {(21,z2)\~2 - W2 1 O&(x, - p31) - d,(n - p32) > 0); 

HI1 = {(x1,22)(21 - Sldl 1 W&a - f’71) - d,(m - p72 > 0; 

-d&q - 911) + d&2 - 912) L 0; -&(l - ~2)(~1 - Al) 

-d,pz(m - A2) 10); 

~12 = {(~1,z2)l&p1(~1 - 6) - &(I- p1)(~2 - C2) > 0; 

-d2(21 - 91,) + d,(m - 912) L 0; -&(l - PZ)(~ - AI) 

-d,p2(m - A2) 1% 

H21 = {(zt,zz))&(zt - 11) - d&z - 12) > O&(1 - p2)(21 -4) 

-d,pz(m - 442) 2 0; 

-dzp,(n - 6) - 4 (1 - PI&~ - C2) > 0; 

-d2(21 - 92,) + 4(X2 - 922) 1 O>; 
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HZ? = { (x:1,22) 1x2 - Sd2 > 0; -&(x1 - P,,) - dl(22 - 1’32) > o; 

-d2P1(Q - Cl) - dl(l - Pl)(Z2 - C2) > 0; -d2(21 - 921) 

+d1 (z2 - 922) > 0); 

~‘1 = {(%z2)) -21 +&dl > o;d2&71 -41) +&(I -p1)(22 -q2) 2 0); 

G2 = {(~1,~2)[ - 22 + 6& > Q&(1 - M)(z~ - P31) + dlp2(x2 - P32 > 0); 

where gt = (gr 1, gr2)T is the point in x-space given by: 

911 = &dl; 
912 = C2 + (Cl - Wddm/4(1 - ~1). 

g2 = (921, g22)T is the point in x-space given by: 

921 = 4 + (A2 - %d2)duw’d2(1 - ~2); 

922 = h-h. 

and E = (Et, ,?3~)~ is the point in x-space given by: 

El = (-0, + j/m)/O1 and I32 = &(-82 + d-)/O, + J2. 

where, 

6 = (c~/dt)(~~ - t,“) + (c;/&)(l -t:); 
02 = (c:/dl)(J& - t3t4) - (&‘ddt& 

03 = ‘W1 - k2) + (c:/dl)(J: - 12) + (c2+/&)& 

~$1 = -(dl/&)(l - /~/PI; 

J2 = AI + kddl/d2)(1 - PI)/PI; 

t3 = -(dddd(m/m); 

E4 = p2A1 + (p2/p1)(1 -p&42 + (1 - p2)C1 + p2(dl/d+‘2; 

t5 = (1 - P2)h 

b = ~2C2 - A2(1 - PZ)(~ - d/m + (&/dd(l - p2)(C1 - Ad- 

REMARK. Line LE is the boundary in x-space separating Region G12 and G21. 
Since the direction of Line LE is known (given by the vector (-dr , -d2) inx-space), 
it is sufficient to find the coordinates of Point E in x-space to completely define 
Boundary LE. To determine Point E, we note that for initial surplus levels belonging 
to G12flG21 (i.e., on Line LE), the cost of reaching the cyclic schedule at Point E 
with a setup change to Part Type 2 and the cost of reaching the cyclic schedule at 
Point F with a setup change to Part Type 1 must be equal. Mathematically, this can 
be written as follows: 

kl + J = k2 + J + (c;/dl)(Ef - F,2) + (c$/d2)(E; - F,2). 
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Figure 8. Partition of Region R”. 

Figure 9. Partition of Region G. 

Here, J represents the cost of reaching Point E with a setup change to either 
part type. Now, noticing that E E Ll, F E L2, E E LE and F E LE, we 
express Fl, I$,, and El as a function of E2 and then substitute in the above cost 
equality. The result is a quadratic in E2, El is then obtained by substituting E2 by 
its expression from the quadratic solution as shown above. 
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In the case where El > Ai, Region G21 becomes empty (i.e., G21=0). This 
case corresponds to a very high setup cost of Part Type 1 compared to that of Part 
Type 2. Therefore it is more economical to setup the machine to Part Type 2 before 
the cyclic schedule is reached. 

In the case of equal setup costs for both part types, Point E coincides with Point 
I. In this case, we obtain the exact partition obtained in Bai and Elhafsi (1996). The 
optimal control for initial surplus levels in Region R” is given in the appendix. In 
the next sub-section, we provide the optimal transient solution in Region R”. 

6.1. OPTIMALTRANSIENTSOLUTIONIN REGION 72" 

The optimal solution for initial surplus levels in Region R” is not obvious and is 
more involved mathematically. The following results were established in Bai and 
Elhafsi (1996). 

FACT 1. For initial surplus levels in Region R”, the optimal way to progress 
toward the cyclic schedule is by producing at maximum machine speed whenever 
it is possible. That is, u* = (Ut , 0) or (0,172) if the machine is producing and 
u* = (0,O) if the machine is undergoing a setup change. Therefore, given the 
current setup state, we know the direction of the surplus trajectory in RU. 

DEFINITION 1. We say that a trajectory is following Direction Q, if it moves 
parallel to Line Li in the direction of increasing zi. That is, the machine is producing 
Part Type i (i = 1,2) at maximum machine speed. If the machine is undergoing a 
setup change, then the trajectory follows Direction Do, where both surplus levels 
deplete (Direction (41, -42)). 

REMARK. Since for surplus levels in Region R”, the machine is either producing 
at its maximum rate or being set up, the trajectories will move either along Direction 
DI , along Direction 02 or along Direction Do. 

DEFINITION 2. We call a Di - n - step trajectory (i = 1,2; n > l), a trajectory 
that performs alternately mi setup change-production runs of Part Type i and rnj 
setup change-production runs of Part Type j (j# ) i ; with the initial setup change to 
Part Type i and the last segment touching the cyclic schedule at point B or D. If IZ is 
even then rni = rnj = n/2. If Iz is odd then rni = (n + 1)/2 and rnj = (n - 1)/2. 
A D1 - 3 - step trajectory is shown in Figure 10. 

FACT 2. To reach the cyclic schedule in finite time, starting with initial surplus 
levels in Region RU, the trajectory leading to the cyclic schedule must touch the 
boundary Lij (i, j =1,2, and ifj) of Region R’, just before switching to Part Type 
j and reaching the cyclic schedule at one of the points B or D. That is, the last 
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Figure 10. Illustration of the setup switching policy. 

setup change before reaching the cyclic schedule is initiated on the boundary L12 
or L21. 

In Elhafsi and Bai (1996b), it has been established (for the case of Figure 2) that 
the optimal switching policy is a special corridor policy with two windows. In the 
case where production at the demand rates is possible in the cyclic schedule, this 
result is still valid and in fact is optimal when applied to the extracted schedule 
characterized by its location in x-space given by A, B, C, and D (equations (20)- 
(23)). Figure 10 illustrates this corridor policy which is completely characterized 
by its corridor walls defined by boundaries al and a2 and its corridor windows 
defined by the pairs of points (Wl ,Vl) and (W2,V2). Using the technique developed 
in Elhafsi and Bai (1996b), we can determine the corridor boundaries and windows 
as follows: 

Equations of Boundaries l?l and 2?2: 

al : Mlxl + Mzx:, + M3 = 0; (26) 

MI = q/(1-PI)- plpzc~l(l-pl)(l-p)-(dl/d2)(~1/~2)~2Cr; (27a) 

M2 = -(W2)p2c3(1 - p) 

-4IP2 - Ql(1 - p2)c; /p2; (27b) 
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M3 = -(MlG + M2C2). (27~) 

and 

B2 : N, x1 + N2x2 + N3 = 0; (28) 

Nl = -tW1hc2+ltl -P> - cf/p, - a,(1 - p2)cJpl; (294 

N2 = ~2/(1-~2)-~1~2~~/(1-~2)(1-~)-(~2/dl)(~2/~1)~1~~; (29b) 

N3 = -(NlAl + NzA2). (29c) 

Corridor windows: 
Let W1 = (w1l,w12), Vl = (2111,2112), W2 = (wz,w22), and V2 = (2121,2)22) in 
x-space. WI satisfies the following system: 

w;, + a2w11 + a3 = 0; 

~12 = -(MI/M&JII - (M&b); 

1 Vll = Wll + PlP2bJll - Cd/(1 - P) + (dl/d2)P2(1 - Pl) 

(w2 - C2)/(1 - p); 

2112 = c2 + PlP2(C2 - w2)/(1 - p) + (d2/4)Pl(l - p2) 

(Cl - Wll)/(l - p); 

where, 

al = <r:, - 1)q - &c;t‘ + ($2 - (MllMd2)4 - 42G- 

2dl(l - Pl) 2d2(1 - P2) 

a2 = (YIl(Pl1 - Wl) + wl)q - mw~ 

&(l -P1) 

+ (712~12 - MlMdM;)c; - w2(742 - J2d2)c; ; 

d2U - P2) 

a3 = Pll(Pl1 - %dl)q- - (4, - mq 

ml - Pl) 

+ (pt2 - (M3/M2)2 - 1,“)~; - (‘~12 - b2d2)2c2 _ k 

2ca,(l - P2) 
2. 

rl,, = ~2(d,l&)tMlM2)w - dtl - P>; 

712 = w{(&/d,)p, - (Ml/M2)( 1 - /I~)}; 

(30) 

(31) 

VW 

Wb) 

(324 

(334 

(33b) 
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WI = ad1 - ~2)A1 + ~1~2(Wd2)(A2 + (M3/u2)) 

+h-b2/(1 - l-4; Wd 

7~2 = -/w2@2/4)-41 - mp2A2/(1 - p) - (1 - p2)41M3/&) 

-a2(d2/h)W1; Wb) 

711 = ~ll{(l - p2) - p2(4/~2>(~1/~2)}; VW 

712 = PlP2(~1/~2)/(1 - P> - pm2(d2/&); t35b) 

pll = -P1p2c1/(1 - p> - p2+h/d2)(C2 + (M3/M2)); CW 

/.412 = Pla2(d2/4)Cl + (1 - ,4a2C2 + plpZ(M3/M2)/(1 - p); t36b) 

and W2 satisfies the following system: 

blwz2 + b2w22 + b3 = 0; 
w21 = -(N2/N1)w22 - (N3/N1); 

(37) 

~21 = Al + rw2(4 - 7~21)/(1 - p) + (4/dz)p2(1 -PI) 

(A2 - w22)/(1 - P); 

~22 = ~22 + m2(w22 - A2)/(1 - P) + @2/4)~1(1 - ~2) 
(38) 

(~21 - Ad/(1 - P>; 

where, 

bl = (-y,“, - (N2/Nl)2>cf - &c, + (32 - l)cZ - 7M ; 

24(1 - Pl) 2d2(l - P2) 

b2 = (721/-L21 - N2N3/N;)c: - r/21(2121 - 61dl)c; 

a1 -PI> 

+ (Y22b22 - 62d2) + S2d2)c; - q22v224 ; 

d2(1 - P2) 

b3 = (/ii, - (N3pq2 - I;)$ - (u21 - w1)2c, 

24(1 - Pl) 

+p22(p22 - 2~2d2)q- - ($2 - 34 _ ]F . 

2d2(1 - P2) 
17 

rl21 = W{(W~2)P2 - (N2/W)(l - P2)h 

(394 

t39b) 

(39c) 

(404 

Wb) 7722 = Pl~2(~2/4)(~2/Nl) - p1p2/(1 - p); 
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‘21 = -P@2c1/(1 -d - P244/d2)C2 - (1 - p2)(u1(N3/Nl) 

-Q1(4 /d2)62d2; (414 

2122 = w2(d2/4)(G + (N3/h)) + (1 - P1)(-112C2 

f62d2Pl/(l - p); 

721 = PlP2(~2/W)/(l - P) - P24w2); 

722 = az{(l - Pl) - p1(d2/4)(N2/N1)}; (42b) 

P21 = (1 - ~2hA1 + ~2dW2)-42 + plp2(N3/Nl)/(l - P); (434 

~22 = -/w2(~2/~1)(4 + (N3/&)) - pw2A2/(1 - p). (43b) 

Notice that in (30), wrr must be a real root of the quadratic such that wrl 5 Cr. 
Similarly, ~22 in (37) must be a real root such that ~22 5 AZ. If either quadratic in 
(30) or (37) has no real root, then the corridor window does not exist in this case 
meaning that it is always optimal to reach the extracted schedule from the other 
side (i.e., the side with the corridor window). 

Now based on Facts 1 and 2, the optimal trajectory emanating from a point in 
Region R” and leading to the extracted schedule in finite time can be obtained 
as follows: Given an initial surplus point in Region R”, we choose the first setup 
and calculate the cost of the trajectory leading to the extracted schedule with two 
setup changes only. At this point, we have a Di - 2 - step trajectory, where i is 
the initial setup for Part Type i. The next step is to try to lower the cost of the 
current trajectory by introducing a setup change to the other part type so that the 
extracted schedule is reached at the opposite side. If the cost can be reduced, then 
the obtained new trajectory is a Di - 3 - step trajectory. We keep trying to reduce 
the cost of the current trajectory by introducing, each time, a setup change before 
the extracted schedule is reached until we cannot lower the cost anymore. At this 
point we have an optimal Di - n - step trajectory emanating in Region R” and 
reaching the extracted schedule in finite time. In the same manner, we obtain the 
optimal Dj - n - step (j#i) trajectory starting with a setup to Part typej first. The 
optimal trajectory would be the one with the lowest cost. The numerical solution 
of various examples suggests that the above procedure be further simplified based 
on the following Conjecture. 

CONJECTURE. The initial setup of the optimal trajectory is given by i* = 
argm&, 1 2 { Cf (z) > , where C!(z) is the cost of the Di - 2 - step trajectory 
starting with a setup change to Part Type i and reaching the extracted schedule with 
two setup changes only. 
Based on the above Conjecture, The optimal trajectory emanating from X=(a,b) in 
Region R” is obtained using the following procedure. 
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PROCEDURE 

205 

STEP 0: X1 (0) := a, X2(O) := b; k := 1; 
Il? Cf(X(0)) 2 C;(X(O)) THEN 
X*(k) := X*(O) - S2d*; 
X2(k) := X2(0) - 62d2; 
GOT0 STEP 1; 
ELSE 
X*(k) := Xl(O) - S1d1; 
X2(k) := X2(0) - S1d2; 
ENDIF; 

STEP 1: k := k + 1; 

xl(k) := (dlP2(M3 +x2@ - 1)M2) + d2(1 - p2)&(k - 1)442)/ 

(d2(1 - P2)M2 - dlP2W) 

x2(k) := -(Ml/~2)xl@) - (M3/M2); 
IF Xl(k) 2 zull THEN 
Xl@) := YGW - 1) + p11; 

X2(k) := 712X2@ - 1) + 1-112; 
k:=k+l, 
X*(k) := x1 (k - 1) - 61d1; 
X2(k) := x&k - 1) - c$d2; 
k:=k+l; 
X(k) := I; 
GOT0 STEP 3; 
ELSE 
GOT0 STEP 2; 
ENDIF; 

STEP2: k := k + 1; 
x2@) := (d2PI(N3 +x1@ - I)%) + dl(l - pl)xl(~ - l)Nl)/ 

(4 (1 - Pl)W - d2PlN2) 

xl(q := -(N2/X)X2(~) - (N3/N1); 
IF X2(k) 2 wz2 THEN 
Xl(k) := 721x1 (k - 1) + p21; 

X2@> := 722X2@ - 1) + p22; 
k := k + 1; 
X,(k) := Xl(k - 1) - ti&; 
X2(k) := x&k - 1) - Szd2; 
k:=k+l, 
X(k) := I; 
GOT0 STEP 3; 
ELSE 
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GOT0 STEP 1; 
ENDJF; 
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STEP 3: OUTPUT: OPTIMAL TRAJECTORY= 
{X(O), X(l), . *. 3 w - I>, xw; 

Compared to the case of zero setup costs, the only change is in the expressions of 
a3 and b3 given above by (32~) and (39~) respectively, where -Icz was added to as 
and -kr was added to b3 originally obtained in Elhafsi and Bai (1996b). This result 
is intuitive since in the case of non zero setup costs, we will have wider corridor 
windows, which means that if the setup costs are high then it might not be optimal 
to add another setup change and therefore reach the extracted schedule producing 
the same part type that the machine is set up for and therefore avoiding a rather 
expensive setup change. Also, note that the setup costs do not appear explicitly in 
the equations of the boundaries 231 and 232, but the latter depend on the setup costs 
implicitly through the coordinates of the points A and C of the extracted schedule. 

6.2. A NUMERICALEXAMPLE 

Consider the following system: 
Part Type 1: 
cr = $2funitfday, cl = $lO/unitJday, Ur = 8lday, dr = 2Slday, 61 = 1 day, and 
ICI = $100; 
Part Type 2: 
$ = $2/unitlday, CT = $lO/unitJday, U2 = lo/day, d2 = 3/day, 62 = 1 day, and 
Ic2 = $120. 

Figure 11 shows the optimal location and shape of the cyclic schedule as well as 
the optimal trajectory emanating at the point (-20,-20) ( i.e., we start 20 units short 
of both part types) in Region R”. Also, Figure 11 shows the boundaries 231 and 82 
as well as the two pairs (Wl,Vl) and (W2,V2) defining the two corridor windows. 
The optimal production and setup planning for this system can be described as 
follows (after rounding to integers): Set up the machine and produce Part Type 2 
at the rate of 10 units/day until its surplus level reaches 14 units (i.e., when the 
surplus trajectory hits Boundary t31); set up the machine and produce Part Type 
1 at the rate of 8 units/day until its surplus level reaches 10 units (i.e., when the 
surplus trajectory hits Boundary 82); set up the machine and produce Part Type 
2 at the rate of 10 units/day until its surplus level reaches 15 units (i.e., when the 
surplus trajectory enters Window (Wl ,Vl)); set up the machine and produce Part 
Type 1 at the rate of 8 units/day until its surplus level reaches 16 units (which 
corresponds to Point P3 on the cyclic schedule); switch to the control actions of 
the cyclic schedule given as follows: Set up the machine and produce Part Type 
2 at the rate of 10 units/day until its surplus level reaches 0; continue producing 
Part Type 2 at the demand rate of 3 units/day until the surplus level of Part Type 1 
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Figure 1 I. Numerical illustration. 

drops to 5 units; at this moment, increase the production rate of Part Type 2 to 10 
units/day until its surplus level reaches 16 units; set up the machine and produce 
Part Type 1 at the rate of 8 units/day until its surplus level reaches 0; continue 
producing Part Type 1 at the demand rate of 2.5 units/day until the surplus level of 
Part Type 2 drops to 8 units; at this moment, increase the production rate of Part 
Type 1 to 8 units/day until its surplus level reaches 16 units, which is the point we 
started the cyclic schedule at. 

7. The Case of Zero Setup Times and Nonzero Setup Costs 

In this section, we consider the case where setup times are very small or are order of 
magnitude smaller than the other parameters of the system (especially setup costs). 
This kind of situation may arise when the setup changes can be accomplished 
relatively quickly, but the equipment, the material (cleaning products for instance) 
or the labor used for setup changes are very expensive. As in the general case, we 
divide the analysis into two parts: steady state and transient cases. 

7.1. STEADYSTATEOFTIMALSOLUTION 

The steady state solution for this case can be obtained using the same procedure 
used for the case where setup times are nonzero. The following theorem shows that 
in the case of zero setup times, the cyclic schedule must have at least one segment 
with demand production rate (i.e., it is not possible to have the case of Figure 2). 
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THEOREM 4. If the setup time is zerofor both part types, then there is at least one 
segment within the cyclic schedule corresponding to a production at the demand 
rate. That is, if S1 = 62 = 0, then it is not possible to have r; = r. = 0. 

Proof: Assuming that T; = 0 and it = 0, and letting S 3 0 in the objective 
function introduced in the proof of Theorem 2, gives: 

F(O,O) = lilio 
(K + %T;/2 + H&/2) K =- 

To 0 
= oo (since To = S/(1 - p) and K > 0). 

Hence, this solution cannot be optimal. w 

In the case of zero setup times, the general structure of the cyclic schedule is as 
shown in Figure 12. The coordinates of the cyclic schedule in this case are given 
as follows: 

( 0 

p1 = Sz + sl&/dl)pl/(l -pl) ’ > 

P2= 
( 

0 
s2 + 4-w1)p1/(l - PI) - TId2 

) P3 = P4 

p5 = 
( 

Sl + aw2)P2/U - P2) 

0 > 
7 

p6 = ‘1 + S2(dl/d2)p2/(1 - P2) - 724 
0 > 

, p7 = p8 

= 

ZZ 

Sl ( > s2 ’ 

Sl ( ) s2 . 
Where si, Si, Qi and 7i (i=1,2) are the optimal values calculated using the same 
procedure as in the case of non zero setup times. 

The extracted schedule in this case collapses to a single point in the x-space 
(Point I in Figure 12). To see this, let S1 = 62 = 0 in the coordinates of the extracted 
schedule calculated for the nonzero setup times case (Equations (20)-(23)). This 
gives: 

A=B= SI + M/d2)~2wQz - (1 - ,92b1&1 

~2 + (d2/4)w2Q1 - pw2Q2/(1 - P) ’ 

C=D= ~1 + (W2)/32wQ2 - m2Q1IU - P> 
S2 + (d2/4)w2Q1 - (1 - p&2&2 > ’ 

But, si = Si - Qi. Substituting in the coordinates of A and B, gives the Points C 
and D. Therefore, 

A=B=C=D=I= SI + (4/d2)~2aQ2 - (1 - p2hQ1 

32 + (d2/4)~1~2Q1 - mp2&2/(1 - P) > ’ 
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Figure 12. General structure of the cyclic schedule in the case of no setup times. 

7.2. TRANSIENT OPTIMAL SOLUTION 

As for the case of nonzero setup times, we divide the x-space into two mutually 
exclusive major regions. Region R” and Region R0 defined as follows: 

R” = {(%~2)1~2(1 - P2)(Q - 11) +&72(x2 - 12) < W2Pl(Q - 4) 

+h(l - p1)(22 - 1;) < O}; 

R0 = {(%Z2)ld2(1 - P2)(21 - 11) + Q2(z2 - 12) > W2Pl(~l - 11) 

+&(I - p1)(z2 - 12) L O}. 

This partition of the x-space is shown in Figure 13. In this case, Lines L12 and 
L21 coincide with Lines L2 and Ll respectively. Lines Ll and L2 are defined as 
follows: 

LineLl : d2Pl(Zl - 11) + dl(1 - p1)(x2 - 12) = 0; 

LineL2: d2(1-p2)(z1-11)+dl~2(22-12)=0. 

The optimal transient solution for initial surplus levels in Region R” can be 
obtained by inspection in a similar way as in the case of nonzero setup times. The 
optimal switching policy in Region R” for the case of nonzero setup times is a 
special corridor policy characterized by the boundaries Bl and 82 of the corridor 
wall, and the two windows of the corridor defined by the points Wl and W2. In 
the case of zero setup times, to obtain the optimal policy, all we need to do is to 
let 61 = 0 and 62 = 0 in the equations of Boundaries al and 82 as well as in the 
coordinates of Points Wl, VI, W2 and V2. 
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Figure 13. Partition of the x-space in the case of zero setup times. 

8. Conclusion 

In this paper, we studied a two-product manufacturing system incurring setup 
times as well as setup costs when production is switched from one product to 
the other. The production rates are controllable. We provided a feedback control 
formulation of the problem. We distinguished between two different periods: a 
steady state period (for which the problem reduces to the two-product Economic 
Lot Scheduling Problem), and a transient period. The steady state optimal solution 
consists of a cyclic schedule, where the two products are produced alternatively. 
We showed that in the steady state, within the production run of a product, it might 
be optimal to reduce the production rate from the maximum to the demand rate 
so as to keep its inventory at the zero level for a certain amount of time, and 
therefore, delay as much as possible the setup cost of the next setup change. This 
is particularly true in the case of high setup costs, since we do not want to switch 
setups frequently. The optimal transient solution consists of a trajectory in x-space 
leading to the cyclic schedule in finite time and with minimum cost. The former 
is obtained by partitioning the x-space into two mutually exclusive major regions. 
For initial surplus levels (inventory/backlog) in one of the regions, the optimal 
solution is obtained by inspection. For initial surplus levels in the other region 
a procedure is provided to determine the optimal state-space trajectory. Also, we 
studied the case of zero setup times and nonzero setup costs and showed that at 
least one product should be produced at the demand rate for a certain time within 
the cyclic schedule in this case. 
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Appendix 

A. Proof of Theorem 1 

First, we prove the theorem for the transient case. Then, we show that a similar 
argument can be used for the steady state case. The proof is based on the Hamilton- 
Jacobi-Bellman (HJB) equation. Throughout the proof, we assume that the optimal 
cost functional is differentiable in x and t. In fact, the optimal state trajectory is 
continuous piecewise linear. Hence, the optimal cost will not depend explicitly on t 
and will be the sum of quadratics in x (since the cost rate is linear in x) and therefore 
differentiable in x. 

Transient case: In this case, we have Tf = t, in the expression of J& to obtain 
the optimal transient cost component. The HJB equation (see Gershwin (1993) for 
a formal derivation) is given by: 

It is clear that, when the machine is undergoing a setup change to a Part Type, there 
is no decision to make and (UT, US) is forced to be equal to (0,O). Now, assume that 
we know the optimal setup state of the machine. Let (T = (1, 0, 0,O) be this setup 
state. That is, the machine can produce Part Type 1. In this case, the HJB equation 
can be rewritten as follows: 

Now, notice that at each time instant t, if we knew J;i (z, t), we would solve 
a linear programming problem for which ~1 and 2~2 are the decision variables, 
aJ$f/2q and aJ;i/& are the cost coefficients and R(1,O) is the constraints 
set, n(l,O) = {( 211, uz)lO 5 ~1 5 Vi, ~2 = 0}, which is bounded and convex. 
We know that the solution of the above linear programming problem is always at 
a vertex of the constraint set R( l,O). That is, (u;, US) is either equal to (0,O) (if 
8 JGf /a~:, > 0) or equal to (Vi, 0) (if a J$ /&ri < 0). Furthermore, the solution 
is unique if the cost coefficient dJ;f/dzl is nonzero. In the case dJGf /&I = 0, 
the solution is not unique anymore since any solution (UT, u;) will not affect the 
objective function of the linear programming problem at time instant t. However, 
to keep the cost coefficient aJGf /&ri equal to zero at time instant t + 6t, we should 
produce Part Type 1 at the demand rate dt so as to minimize the rate of increase of 
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the cost function J;f. In this case (UT, u;) is equal to (di , 0). A similar argument 
is used when the optimal setup state is CT = (0, 1, 0,O). 

Steady state case: In this case, let t, = t and Tf = tf in the expression of JGf 

above. Let J* = minf, J,“(s, t) = min,,,,~(~,~)(tf - t,)-l Jz g(z(s), o(s)) ds. 
Here, we have an average cost formulation. The HJB equation (see Kushner and 
Dupuis (1992) for a formal derivation) in this case is given by: 

J* = min 
aJ&((b,R) 

9(v) + 

where 
V(x,t) = lim 

(tf-q-m 
JGf - (tf - t)J*. 

As in the previous case, for each time instant t, if we knew V(Q), we would solve a 
linear programming problem which decision variables are the production rates ~1 
and 24 and which cost coefficients are lW/i3x~ and W/d22 respectively. Hence, 
using a similar argument as for the transient case and using Lemma 1, the result 
follows immediately. 

B. Proof of Theorem 2 

The proof is based on the Karush-Kuhn-Tucker (KKT) optimality conditions. It 
is not difficult to show that the optimal 71 and 72 can be obtained by solving the 
following nonlinear optimization problem: 

minimize F(7t ,72) = 

(K + HI(To + (al - 1)~1 + 1r27~)~/2 + H2(To + ~~171 + (m - 1)~)~/‘2) 
To + cqq + ~3272 

subject to : q>o i=1,2; 

where, 

Hi = yidi(l - pi) i = 1,2; 
CYi = (1 -&)/(l -p) i = 1,2; 
To = S/(1 -p). 

Also, it can be shown (see Elhafsi and Bai, 1996a) that F(7t, 7-2) is strictly convex in 
~1 and 72. Since the constraint domain is convex, it follows that the KKT optimality 
conditions are necessary and sufficient (which establishes the if and only if part of 
the theorem). 

Let gi(Tr, 72) = --7i(i = 1,2). Then, the KKT optimality conditions are given 
as follows: 
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/J191(%T2) = 0 

/-J292(71,72) = 0 

pi 2 Ofori = 1,2 

where, rt is the optimal value of ri(i = 1,2). VF(q, 7-2), Vgr (q, TV) and 
Vg2 (7-1,~~) are the gradients of F(T~ ,7-z), gr (r1,7-2)) and g2(q, 7-2) respective- 
ly. 

Now, letting 7: = O(i = 1,2), calculating the gradients and substituting in the 
KKT conditions, we get: 

@x1/2 - 1)Hl + CqH2/2 - cqK/T; - pi = 0; 
a2H1/2 + (42 - l)H2 - clQK/T$ - p2 = 0. 

For the KKT conditions to hold true, we must have pi 1 O(i = 1,2). Hence, we 
must have 

alK/T; I (42 - 1)Hl + a1H2/2; 

“2K/T$ I a2H1/2 + (42 - l)H2. 

Substituting cur, a~, Hi and Hz by their expressions gives: 

K 5 T;((l - ~2)(72d2 - wh) + ~“114)/2; 

K 5 T;((P + ~1 - lh2d2 + (1 - ~1)~14)/2. 

Now letting K=O, we get the following conditions: 

(1 - P2kY2d2 - Yldl) + ml& 2 0; (4 

(P + Pl - vY2d2 + (1 - Pl)Yl& 2 0. (b) 

Notice that condition (a) is always satisfied since y2d2 1 yidr . For condition (b), 
if p + pr - 1 2 0, then it is always satisfied. If p + pt - 1 < 0, then it is satisfied 
only if 72d2/71dl I (1 - pt)/( 1 - p - pi). Which completes the proof. 

C. Proof of Theorem 3 

We prove the theorem by contradiction. Assume that T; > 0 and Al > 0, then QT 
and Q$ are given by (14a) and (14b), where K=O. In this case, we have: 

QT = ~Q&Y~/(w&~I+ ~1&~2), and QZ = %2~l~l/(wh~l+ ald2y2). 

Now, using (15a) and (15b), we get: 

6 = 2q2wh/d2(Q2Ydl + wY2d2) - 2qlY2d2pl/dl(l - p1) 

(a2wJ1 f wy2d2) - 6 > 0; 

and r.-J = &lY2~2/4(Q2Ydl + w2d2) - &2whp2/d2(1 - p2) 

(Q2Ydl + wy2d2) - 6 > 0. 
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substituting qi and qz by their expressions, simplifying and rearranging terms gives: 

(1 - P~)YI~I - (1 + pdy2d2 > 0 and (1 - pl)y2d2 - (1 + p2)7ldl > 0. 
* ~2d2/~14 < (1 - p2)/(1 + PI> < 1 md-wh/wb > (1 + p2)/(1 -pi) > 1 

Which cannot be. Hence, in the case of no setup costs, 7; and 7. cannot be nonzero 
simultaneously. 

D. Optimal Control for Initial Surplus Levels in Region 72’ 

To summarize the control actions in Region R”, let x = (a, 6) be the vector of 
initial surplus levels in Region 77.“. 

0 If x E Gl: 
1: Setup the machine for Part Type 1; 
2: After the setup change, produce Part Type 1 at the rate Ui ; 
3: When the surplus level of Part Type 1 becomes 0, change the 

production rate to di ; 
4: When the surplus level of Part Type 2 becomes 22 = 

A2 + Al&pl/dl( 1 - pr), switch to the control actions of the cyclic 
schedule. 

0 Ifx E Gil UHll: 
1: Do not produce either part type; 
2: When the surplus level of Part Type 1 becomes Jrdi, start a setup 
change for Part Type 1; 
3: After the setup change, produce Part Type 1 at the demand rate di ; 
4: When the surplus level of Part Type 2 becomes x2 = A2+Al&p1 /dl (l- 
pi), switch to the control actions of the cyclic schedule. 

a If x E G12 u H21: 
1: Do not produce either part type; 
2: When the surplus level of Part Type 2 reaches level E2, immediately 
start a setup change for Part Type 2.12 is given by 
12 = (1 - p2)(b - (d2/4)a) + (d2/4)(1 - p2)-41 + p2A2; 
3: at the end of the setup change, switch to the cyclic schedule control 
actions. 

a If x E G21 U H12: 
1: Do not produce either part type; 
2: When the surplus level of Part Type 1 reaches the level 11, immediately 
start a setup change for Part Type 1. Ii is given by 
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11 = Pl (b - (d2/4)4 + (~2/~l)PlCl + (1 - p1)C2; 

3: at the end of the setup change, switch to the cyclic schedule control 
actions. 

l If x E G22 u H22: 
1: Do not produce either part type; 
2: When the surplus level of Part Type 2 becomes &&, start a setup 
change for Part Type 2; 
3: After the setup change, produce Part Type 2 at the demand rate d2; 
4: When the surplus level of Part Type 1 becomes xr = Cr +C2dl&d2 (l- 
pz), switch to the control actions of the cyclic schedule. 

a If z E G2: 
1: Setup the machine for Part Type 2; 
2: After the setup change, produce Part Type 2 at the rate U2; 
3: When the surplus level of Part Type 2 becomes 0, change the production 
rate to d2; 
4: When the surplus level of Part Type 1 becomes x1 = Ci +C2di p2/d2 (l- 
p2), switch to the control actions of the cyclic schedule. 
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